488 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Table 13.11 R3000 Pipeline Stages

Pipeline

IF ‘ ‘¢l’ : " ‘ N 'Usmg the'fLB, translatcanmstmmonvmualaddressm:aphyaal

IF 2 Senaﬂ;ephmacdm;ammmsddrm

RD #1 Return instruction from instruction cathe: '

" Compare tags and validity of fetched m(?mction
RD ¢2 Decode instruction.
) Read register file.
P &re I branch, caleulate branch target address,

ALU 1+ 2 Ifregister-to-register operaﬁon,thearkhmencotiogm!opawonmpefﬁurmed.

ALU #1 - Ifabraich,decide whether the branch is to be takenornot, .

o © """ Ifamemory reference (load or store), calculate data virtual address.

ALU 2 o Ha memory reference, translate datd virtusl address to physical using TLB.
"MEM " ¢1 Ifamemory reference, send physical address to data cache.

MEM ¢2 . Ifamemoryreference,retumdatafromdatacache,andcb«;ktags.
WB ¢1 Write to register file. o :

incorporated on the chip. Before looking at the final R4000 pipeline, let us con-
sider how the R3000 pipeline can be modified to improve performance using
R4000 technology.

Figure 13.9b shows a first step. Remember that the cycles in this figure are half
as long as those in Figure 13.9a. Because they are on the same chip, the instruction
and data cache stages take only half as long; so they still occupy only one clock cycle.
Again, because of the speedup of the register file access, register read and write still
occupy only half of a clock cycle.

Because the R4000 caches are on-chip, the virtual-to-physical address translation
can delay the cache access. This delay is reduced by implementing virtually indexed
caches and going to a parallel cache access and address translation. Figure 13.9c shows
the optimized R3000 pipeline with this improvement. Because of the compression
of events, the data cache tag check is performed separately on the next cycle after
cache access.

In a superpipelined system, existing hardware is used several times per cycle by
inserting pipeline registers to split up each pipe stage. Essentially, each superpipeline
stage operates at a multiple of the base clock frequency, the multiple depending on
the degree of superpipelining. The R4000 technology has the speed and density to
permit superpipelining of degree 2. Figure 13.10a shows the optimized R3000
pipeline using this superpipelining. Note that this is essentially the same dynamic
structure as Figure 13.9c.

Further improvements can be made. For the R4000, a much larger and special-
ized adder was designed. This makes it possible to execute ALU operations at twice
the rate. Other improvements allow the execution of loads and stores at twice the
rate. The resulting pipeline is shown in Figure 13.10b.

13.6 / MIPS R4000 487

Clock Cycle
¢1§¢2|¢1§¢2|¢1§¢2 o & ¢1§¢2|
"F | &m0 | AW MEM | WB |
I-Cache RF ALU OP D-Cache WB
ITLB IDEC | DA | DTLB
1A
(a) Detailed R3000 pipeline
IF = Instruction fetch
RD = Read
| Cycle ‘ Cycle Cycle ’ Cycle ‘ Cycle Cycle MEM = Memory access
¥ . WB = Write back
l ITLB Icadw‘RF ALU l DTLB |D-Cache WB} I-Cache = Instruction cache access
. Lo . . RF = Fetch operand from register
(b) Modified R3000 pipeline with reduced latencies D-Cache = Data cache access
ITLB = Instruction address translation
IDEC = Instruction decode
; Cycle ‘ Cycle | Cycle ‘ Cycle Cycle | 1A = Compute instruction address
DA = Calculate data virtual address
ITLB {RF| ALU D—Cache[TC WB] DTLB = Data address translation
- TC = Data cache tag check

(c) Optimized R3000 pipeline with parallel TLB and cache accesses
Figure 13.9 Enhancing the R3000 Pipeline

¢ Data memory reference
¢ Write back into register file

As illustrated in Figure 13.9a, there is not only parallelism due to pipelining
but also parallelism within the execution of a single instruction. The 60-ns clock
cycle. is divided into two 30-ns stages. The external instruction and data access
operations to the cache each require 60 ns, as do the major internal operations (OP,
DA, 1A). Instruction decode is a simpler operation, requiring only a single 30-ns
stage, overlapped with register fetch in the same instruction. Calculation of an
address for a branch instruction also overlaps instruction decode and register fetch,
so that a branch at instruction i can address the ICACHE access of instruction
i + 2. Similarly, a load at instruction i fetches data that are immediately used by
the OP of instruction i + 1, while an ALU/shift result gets passed directly into
instruction i + 1 with no delay. This tight coupling between instructions makes for
a highly efficient pipeline.

In detail, then, each clock cycle is divided into separate stages, denoted as ¢1
and ¢2. The functions performed in each stage are summarized in Table 13.11.

The R4000 incorporates a number of technical advances over the R3000. The
use of more advanced technology allows the clock cycle time to be cut in half, to
30 ns, and for the access time to the register file to be cut in half. In addition, there
is greater density on the chip, which enables the instruction and data caches to be

13.6 / MIPS R4000 489

Clock cycle

[IC] IC2 RF | ALU| ALU | DC1 | DC2 | TC1 | TC2 | WB

ict | 12| rRF|A|ALu|pct | pe2| 1c1| TC2 | WB |

(a) Superpipeli

Clock cycle

o

ned implementation of the optimized R3000 pipeline IF = Instruction fetch first half
IS = Instruction fetch second half
RF = Fetch operands from register
EX = Instruction execute
IC = Instruction cache
DC = Data cache
DF = Data cache first half
DS = Data cache second half
TC = Tag check

d>z|¢‘| 2|, ¢z'¢| ¢2|

[F | 1s] RE| Ex | DF [s | Tc | wB |

| P | s | RF| EX | DF | DS | TC | WB |

(b) R4000 pipeline

Figure 13.10

tions

Theoretical R3000 and Actual R4000 Superpipelines

The R4000 has eight pipeline stages, meaning that as many as eight instruc-
can be in the pipeline at the same time. The pipeline advances at the rate of

two stages per clock cycle. The eight pipeline stages are as follows:

L]

Instruction fetch first half: Virtual address is presented to the instruction
cache and the translation lookaside buffer.

Instruction fetch second half: Instruction cache outputs the instruction and
the TLB generates the physical address.

Register file: Three activities occur in parallel:

¢ Instruction is decoded and check made for interlock conditions (i.e., this
instruction depends on the result of a preceding instruction).

¢ Instruction cache tag check is made.
¢ Operands are fetched from the register file.

Instruction execute: One of three activities can occur:

o If the instruction is a register-to-register operation, the ALU performs the
arithmetic or logical operation.

« If the instruction is a load or store, the data virtual address is calculated.

 If the instruction is a branch, the branch target virtual address is calculated
and branch conditions are checked.

Data cache first: Virtual address is presented to the data cache and TLB.

Data cache second: Data cache outputs the instruction, and the TLB generates
the physical address.

Tag check: Cache tag checks are performed for loads and stores.
Write back: Instruction result is written back to register file.

490 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

13.7 SPARC

SPARC (Scalable Processor Architecture) refers to an architecture defined by Sun
Microsystems. Sun developed its own SPARC implementation but also licenses the
architecture to other vendors to produce SPARC-compatible machines. The
SPARC architecture is inspired by the Berkeley RISC I mnachine, and its instruction
set and register organization is based closely on the Berkeley RISC model.

SPARC Register Set

As with the Berkeley RISC, the SPARC makes use of register windows. Each window
consists of 24 registers, and the total number of windows is implementation dependent
and ranges from 2 to 32 windows. Figure 13.11 illustrates an implementation that

Physical

. Logical registers
registers
Procedure A Procedure B Procedure C
135 R3lc
Ins Ins
128 R24.
127 R23
: Locals * Locals
120 ' R16
119 R15¢ R31c
: Outs/Ins : Outs Ins
112 RS R24
11 R23¢
¢ Locals : Locals
104 R16.
1163, R15¢ R31c
: Outs/ns. : Outs Ins
9% RS, R24
95 R23¢
88 R16.
87 R15¢
Outs . Outs
80 R8¢
7 R7 R7 R7
: Globals : Globals : Globals : Globals
0 RO RO RO

Figure 13.11

SPARC Register Window Layout with Three Procedures

13.7 / SPARC 491

supports 8 windows, using a total of 136 physical registers; as the discussion in
Section 13.2 indicates, this seems a reasonable number of windows. Physical registers
0 through 7 are global registers shared by all procedures. Each process sees logical
registers O through 31. Logical registers 24 through 31, referred to as ins, are shared
with the calling (parent) procedure; and logical registers 8 through 15, referred to as
outs, are shared with any called (child) procedure. These two portions overlap with
other windows. Logical registers 16 through 23, referred to as locals, are not shared
and do not overlap with other windows. Again, as the discussion of Section 12.1 indi-
cates, the availability of 8 registers for parameter passing should be adequate in most
cases (e.g., see Table 13.4).

Figure 13.12 is another view of the register overlap. The calling procedure
places any parameters to be passed in its outs registers; the called procedure treats
these same physical registers as it ins registers. The processor maintains a current
window pointer (CWP), located in the processor status register (PSR), that points to
the window of the currently executing procedure. The window invalid mask (WIM),
also in the PSR, indicates which windows are invalid.

With the SPARC register architecture, it is usually not necessary to save and
restore registers for a procedure call. The compiler is simplified because the compiler
need be concerned only with allocating the local registers for a procedure in an effi-
cient manner and need not be concerned with register allocation between procedures.

Cwp

Figure 13.12 Eight Register Windows Forming a Circular Stack
in SPARC

492 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

Instruction Set

Table 13.12 lists the instructions for the SPARC architecture. Most of the instruc-
tions reference only register operands. Register-to-register instructions have three
operands and can be expressed in the form

Rd «— RSI op S2

R4 and Ry, are register references; S2 can refer either to a register or to a 13-bit
immediate operand. Register zero (Ry) is hardwired with the value 0. This form is
well suited to typical programs, which have a high proportion of local scalars and
constants.

fable 13,12 SPARC Instruction Set

op Description or Description
Load/Store Instructions Arithmetic Instructions
LDSB Load signed byte ADD Add
LDSH Load signed halfword ADDCC Add, set icc
LDUB Load unsigned byte ADDX Add with carry
LDUH Load unsigned halfword ADDXCC Add with carry, set icc
LD Load word SUB Subtract
LDD Load doubleword SUBCC Subtract, set icc
STB Store byte SUBX Subtract with carry
STH Store halfword SUBXCC Subtract with carry, set icc
STD Store word MULSCC . Multiply step, set icc
STDD Store doubleword Jump/Branch Instructions
Shift Instructions BCC Branch on condition
SLL Shift left logical FBCC Branch on floating-point condition
SRL Shift right logical CBCC Branch on coprocessor condition
SRA Shift right arithmetic CALL Call procedure
Boolean Instructions JMPL Jump and link

AND AND TCC Trap on condition
ANDCC AND,set icc SAVE Advance register window
ANDN NAND RESTORE Move windows backward
ANDNCC NAND, set icc RETT Returi from trap
OR OR Miscellaneous Instructions
ORCC OR; set icc SETHI Set high 22 bits
ORN NOR) UNIMP . Unimplemented instruction (trap)
ORNCC NOR, set icc RD Read a special register
XOR XOR WR Write a special register
XORCC XOR, set icc IFLUSH Instruction cache flush
XNOR Exclusive NOR .
XNORCC Exclusive NOR, set icc

13.7 / SPARC 493

Table 13.13 Synthesizing Other Addressing Modes with SPARC Addressing Modes

Sasl b

Immediate operand = A C 820 Register-to-register
Direct EA=A Load,; store
Register ST EAmR , :t- Register-to-register
Register Indirect . BA = (R) . ' Load, store
Displacement EA=(R)+ A Load, store

The available ALU operations can be grouped as follows:

Integer addition (with or without carry)

Integer subtraction (with or without carry)
Bitwise Boolean AND, OR, XOR and their negations
Shift left logical, right logical, or right arithmetic

All of these instructions, except the shifts, can optionally set the four condition codes
(ZERO, NEGATIVE, OVERFLOW, CARRY). Signed integers are represented in
32-bit twos complement form.

Only simple load and store instructions reference memory. There are separate
load and store instructions for word (32 bits), doubleword, halfword, and byte. For
the latter two cases, there are instructions for loading these quantities as signed or
unsigned numbers. Signed numbers are sign extended to fill out the 32-bit destina-
tion register. Unsigned numbers are padded with zeros.

The only available addressing mode, other than register, is a displacement
mode. That is, the effective address of an operand consists of a displacement from an
address contained in a register:

EA = (RSI) + SZ
orEA = (Rg) + (Rg)

depending on whether the second operand is immediate or a register reference. To
perform a load or store, an extra stage is added to the instruction cycle. During
the second stage, the memory address is calculated using the ALU; the load or store
occurs in a third stage. This single addressing mode is quite versatile and can be used
to synthesize other addressing modes, as indicated in Table 13.13.

It is instructive to compare the SPARC addressing capability with that of the
MIPS. The MIPS makes use of a 16-bit offset, compared with a 13-bit offset on the
SPARC. On the other hand, the MIPS does not permit an address to be constructed
from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-bit instruction formats
(Figure 13.13). All instructions begin with a 2-bit opcode. For most instructions, this is
extended with additional opcode bits elsewhere in the format. For the Call instruction,

494 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

2 30
Call format lOp I .. PC-Relative displacement ‘ '
21 4 3 22
Branch i .]
format IOpH Cond lOle PC-Relative displaecment '
2 5 3 A 22
SETHI
format Op| Dest |Op2 Immediate constant
Floating- 2 3 6 3 L 5
point Op{ Dest Op3 Src-1 FP-op Sre-2
format
2 5 6 5 1 8 5
Opi Dest Op3 Src-1 [0} Ignored Src-2
General
formats

Op| Dest | Op3 Src-1 (1| Immediate constant
Figure 13.13 SPARC Instruction Formats

a 30-bit immediate operand is extended with two zero bits to the right to form a 32-bit
PC-relative address in twos complement form. Instructions are aligned on a 32-bit
boundary so that this form of addressing suffices.

The Branch instruction includes a 4-bit condition field that corresponds to
the four standard condition code bits, so that any combination of conditions can be
tested. The 22-bit PC-relative address is extended with two zero bits on the right to
form a 24-bit twos complement relative address. An unusual feature of the Branch
instruction is the annul bit. When the annul bit is not set, the instruction after the
branch is always executed, regardless of whether the branch is taken. This is the
typical delayed branch operation found on many RISC machines and described in
Section 13.5 (see Figure 13.7). However, when the annul bit is set, the instruction
following the branch is executed only if the branch is taken. The processor sup-
presses the effect of that instruction even though it is already in the pipeline. This
annul bit is useful because it makes it easier for the compiler to fill the delay slot
following a conditional branch. The instruction that is the target of the branch can
always be put in the delay slot, because if the branch is not taken, the instruction
can be annulled. The reason this technique is desirable is that conditional branches
are generally taken more than half the time.

The SETHI instruction is a special instruction used to load or store a 32-bit
value. This feature is needed to load and store addresses and large constants. The
SETHI instruction sets the 22 high-order bits of a register with its 22-bit immediate

13.8 / RISC VERSUS CISC CONTROVERSY 495

operand, and zeros out the low-order 10 bits. An immediate constant of up to 13 bits
can be specified in one of the general formats, and such an instruction could be used to
fill in the remaining 10 bits of the register. A load or store instruction can also be used
to achieve a direct addressing mode. To load a value from location K in memory, we
could use the following SPARC instructions:

sethi %hi(K), %18 ;load high-order 22 bits of address of location
;K into register r8
Id [%r8 + %lo(K)], %18 ;load contents of location K into r8

The macros %hi and %lo are used to define immediate operands consisting of the
appropriate address bits of a location. This use of SETHI is similar to the use of the
LUI instruction on the MIPS (Table 13.10).

The floating-point format is used for floating-point operations. Two source and
one destination registers are designated.

Finally, all other operations, including loads, stores, arithmetic, and logical oper-
ations use one of the last two formats shown in Figure 13.13. One of the formats
makes use of two source registers and a destination register, while the other uses one
source register, one 13-bit immediate operand, and one destination register.

13.8 RISC VERSUS CISC CONTROVERSY

For many years, the general trend in computer architecture and organization has been
toward increasing processor complexity: more instructions, more addressing modes,
more specialized registers, and so on. The RISC movement represents a fundamental
break with the philosophy behind that trend. Naturally, the appearance of RISC sys-
tems, and the publication of papers by its proponents extolling RISC virtues, led to a
reaction from those involved in the design of CISC architectures.

The work that has been done on assessing merits of the RISC approach can be
grouped into two categories:

¢ Quantitative: Attempts to compare program size and execution speed of
programs on RISC and CISC machines that use comparable technology

¢ Qualitative;: Examination of issues such as high-level language support and
optimum use of VLSI real estate

Most of the work on quantitative assessment has been done by those working
on RISC systems [PATT82b, HEAT84, PATT84], and it has been, by and large, favor-
able to the RISC approach. Others have examined the issue and come away uncon-
vinced [COLW85a, FLYN87, DAVI87]. There are several problems with attempting
such comparisons [SERL86]:

* There is no pair of RISC and CISC machines that are comparable in life-cycle
cost, level of technology, gate complexity, sophistication of compiler, operating
system support, and so on.

* No definitive test set of programs exists. Performance varies with the program.

496 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

* Itis difficult to sort out hardware effects from effects due to skill in compiler
writing,

* Most of the comparative analysis on RISC has been done on “toy” machines
rather than commercial products. Furthermore, most commercially available
machines advertised as RISC possess a mixture of RISC and CISC character-
istics. Thus, a fair comparison with a commerecial, “pure-play” CISC machine
(e.g., VAX, Pentium) is difficult.

'The qualitative assessment is, almost by definition, subjective. Several researchers
have turned their attention to such an assessment [COLWS85a, WALLS8S5], but the
results are, at best, ambiguous, and certainly subject to rebuttal [PATT85b] and, of
course, counterrebuttal [COLW85b].

In more recent years, the RISC versus CISC controversy has died down to a
great extent. This is because there has been a gradual convergence of the technolo-
gies. As chip densities and raw hardware speeds increase, RISC systems have
become more complex. At the same time, in an effort to squeeze out maximum per-
formance, CISC designs have focused on issues traditionally associated with RISC,
such as an increased number of general-purpose registers and increased emphasis
on instruction pipeline design.

13.9 RECOMMENDED READING

Two classic overview papers on RISC are [PATT85a] and [HENN84]. Another survey article
is [STALB8S8]. Accounts of two pioneering RISC efforts are provided by [RADI83] and
[PATTS2a].

[KANE92] covers the commercial MIPS machine in detail. [MIRA92] provides a good
overview of the MIPS R4000. [BASH91] discusses the evolution from the R3000 pipeline to
the R4000 superpipeline. The SPARC is covered in some detail in [DEWA90].

lASﬁ’l Bashteen,A Lm,l and Mullan 1A Superpnpehm Appxoach to the MIPS
Architecture.” Proceedings, COMPCON Spring 91, February 1991.

' DEWASY Dewar, R., and maosna,M Mmpméesmnm PMgrdmm Vaew New York:

A mwmlsso

'KANES? Kane,(i andHemnch J MIPS RISC Am‘utecture. Englewood Cl!ffs,NJ Prentice

e H, 1990, 2
me mapm &WM andVaSSeghx N mmpsnmmmsor”
“TEBE Micro, April 1992.

rmm Patterson, D., and Seqziin C.“AVLSI msc . Compu!er, Septertiber 1982.
PATTSSa Patterson, D. “Reduced Instruction Set C‘omputm Communications of the
 ACM. January 1985. :
183 Radin, G. “'Ihe 801 Mmlcamputer ” IBM Journal of Research and Development,
May 1983,

‘Stallings, W. “Reduced Instruction Set Computer Archxtecture ” Proceedings of
“the IEEE, January 1988,

13.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 497

13.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
complex instruction delayed load o ; mgigtef file
set computer high-level language (HLL) register window
(CISC) reduced instructionset | SPARC
delayed branch computer (RISC)

Review Questions

13.1 What are some typical distinguishing characteristics of RISC organization?

13.2. Briefly explain the two basic approaches used to minimize register-memory operations
on RISC machines.

13.3 If a circular register buffer is used to handle local variables for nested procedures,
describe two approaches for handling global variabies.

13.4 What are some typical characteristics of a RISC instruction set architecture?

13.5 What is a delayed branch?

Problems

13.1 Considering the call-return pattern in Figure 4.16, how many overflows and underflows
(each of which causes a register save/restore) will occur with a window size of
a. 57
b. 87
¢ 167

13.2 Inthe discussion of Figure 13.2, it was stated that only the first two portions of a window
are saved or restored. Why is it not necessary to save the temporary registers?

13.3 We wish to determine the execution time for a given program using the various
pipelining schemes discussed in Section 13.5. Let

N = number of executed instructions
D = number of memory accesses
J = number of jump instructions

For the simple sequential scheme (Figure 13.6a), the execution time is 2N + D
stages. Derive formulas for two-stage, three-stage, and four-stage pipelining.

13.4 Reorganize the code sequence in Figure 13.6d to reduce the number of NOOPs.
13.5 Consider the following code fragment in a high-level language:
forIin 1...100 loop

S« S+ Q(I).VAL
end loop;

Assume that Q is an array of 32-byte records and the VAL field is in the first 4 bytes
of each record. Using 80 X 86 code, we can compile this program fragment as follows:

MOV ECX,1 ;use register ECX to hold I
LP: IMUL EAX, ECX, 32 ;get offset in EAX

MOV EBX, Q[EAX] ;load VAL field

ADD S,EBX ;add to S

INC ECX ;increment I

CMP ECX, 101 :compare to 101

JNE LP :loop until [= 100

498 CHAPTER 13 / REDUCED INSTRUCTION SET COMPUTERS

13.6

13.7

13.10

This program makes use of the IMUL instruction, which multiplies the second
operand by the immediate value in the third operand and places the result in the first
operand (see Problem 10.13). A RISC advocate would like to demonstrate that a
clever compiler can eliminate unnecessarily compiex instructions such as IMUL. Pro-
vide the demonstration by rewriting the above 80 X 86 program without using the
IMUL instruction.

Consider the following loop:
S:=0;
forK :=1to 100 do
S:=S-K;
A straightforward translation of this into a generic assembly language would look
something like this:

LD R1,0 ;keep value of S in R1

LD R2,1 ;keep value of K in R2
LP SUB R1,R1,R2 S$:=S-K

BEQ R2,100, EXIT ;done if K = 100

ADD R2,R2,1 ;else increment K

JMP LP ;back to start of loop

A compiler for a RISC machine will introduce delay slots into this code so that the
processor can employ the delayed branch mechanism. The JMP instruction is easy to
deal with, because this instruction is always followed by the SUB instruction; therefore,
we can simply place a copy of the SUB instruction in the delay slot after the JMP. The
BEQ presents a difficulty. We can’t leave the code as is, because the ADD instruction
would then be executed one too many times. Therefore, a NOP instruction is needed.
Show the resulting code.

A RISC machine may do both a mapping of symbolic registers to actual registers and
a rearrangement of instructions for pipeline efficiency. An interesting question arises
as to the order in which these two operations should be done. Consider the following
program fragment:

LD SRLLA ;load A into symbolic register 1

LD SR2,B ;load B into symbolic register 2

ADD SR3,SR1,SR2 :add contents of SR1 and SR2 and store in SR3
LD SR4,C

LD SR5,D

ADD SR6,SR4, SRS

a. First do the register mapping and then any possible instruction reordering. How
many machine registers are used? Has there been any pipeline improvement?

b. Starting with the original program, now do instruction reordering and then any
possible mapping. How many machine registers are used? Has there been any
pipeline improvement?

Add entries for the following processors to Table 13.7:

a. Pentium II

b. PowerPC

In many cases, common machine instructions that are not listed as part of the MIPS

instruction set can be synthesized with a single MIPS instruction. Show this for

the following:

a. Register-to-register move

b. Increment, decrement

¢. Complement

d. Negate

e. Clear

A SPARC implementation has K register windows. What is the number N of physical

registers?

13.11

13.12

13.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 499

SPARC is lacking a number of instructions commonly found on CISC machines.
Some of these are easily simulated using either register RO, which is always set to 0, or
a constant operand. These simulated instructions are called pseudoinstructions and
are recognized by the SPARC compiler. Show how to simulate the following
pseudoinstructions, each with a single SPARC instruction. In all of these, src and dst
refer to registers. Hint: A store to RO has no effect.

a. MOV src, dst d. NOT dst g. DECdst
b. COMPARE srcl, src2 e. NEG dst h. CLR dst
¢. TEST srcl f. INCdst i. NOP
Consider the following code fragment:
ifK>10
L=K+1
else
L:=K-1;

A straightforward translation of this statement into SPARC assembler could take the
following form:

sethi %hi(K), %18 ;load high-order 22 bits of address of location
;K into register r8
Id [%18 + %lo(K)], %r8 ;load contents of location K into r8

cmp %rt8,10 ;compare contents of r8 with 10
ble L1 ;branch if (r8) = 10
nop

sethi %hi(K), %r9
Id [%19 + %lo(K)], %19 ;load contents of location K into 19
inc %r9 ;add 1 to (r9)
sethi %hi(L), %r10
st %19, [%r10 + %lo(L)] ;store (r9) into location L
b L2
nop
Ll sethi %hi(K), %rll
Id [%r11 + %lo(K)], %r12 ;load contents of location K into r12
dec %ri12 ;subtract 1 from (r12)
sethi %hi(L), %rl3
st %r12,[%r13 + %lo(L)] ;store (r12) into location L
L2:

The code contains a nop after each branch instruction to permit delayed branch

operation.

a. Standard compiler optimizations that have nothing to do with RISC machines are
generally effective in being able to perform two transformations on the foregoing
code. Notice that two of the loads are unnecessary and that the two stores can be
merged if the store is moved to a different place in the code. Show the program
after making these two changes.

b. It is now possible to perform some optimizations peculiar to SPARC. The nop
after the ble can be replaced by moving another instruction into that delay slot
and setting the annul bit on the ble instruction (expressed as ble,a L1). Show the
program after this change.

¢. There are now two unnecessary instructions. Remove these and show the resulting
program.

INSTRUCTION-LEVEL PARALLELISM
AND SUPERSCAILAR PROCESSORS

14.1 Overview

14.2 Design Issues

14.3 Pentium 4

i4.4 PowerPC

14.5 Recommended Reading

14.6 Key Terms, Review Questions, and Problems

500

